Singular equivalences to locally coherent hearts of commutative noetherian rings

نویسندگان

چکیده

We show that Krause's recollement exists for any locally coherent Grothendieck category whose derived is compactly generated. As a source of such categories, we consider the hearts intermediate and restrictable t-structures in commutative noetherian ring. induced tilting object over heart gives rise to an equivalence between two recollements, particular, singular equivalence.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

NONNIL-NOETHERIAN MODULES OVER COMMUTATIVE RINGS

In this paper we introduce a new class of modules which is closely related to the class of Noetherian modules. Let $R$ be a commutative ring with identity and let $M$ be an $R$-module such that $Nil(M)$ is a divided prime submodule of $M$. $M$ is called a Nonnil-Noetherian $R$-module if every nonnil submodule of $M$ is finitely generated. We prove that many of the properties of Noetherian modul...

متن کامل

Tilting Theory for Coherent Rings and Almost Hereditary Noetherian Rings

We generalize two major ways of obtaining derived equivalences, the tilting process by Happel, Reiten and Smalø and Happel’s Tilting Theorem, to the setting of finitely presented modules over right coherent rings. Moreover, we extend the characterization of quasi–tilted artin algebras as the almost hereditary ones to all right noetherian rings. We also give a streamlined and general presentatio...

متن کامل

Superdecomposable pure injective modules over commutative Noetherian rings

We investigate width and Krull–Gabriel dimension over commutative Noetherian rings which are “tame” according to the Klingler–Levy analysis in [4], [5] and [6], in particular over Dedekind-like rings and their homomorphic images. We show that both are undefined in most cases.

متن کامل

Fully Bounded Noetherian Rings

Let i : A → R be a ring morphism, and χ : R → A a right R-linear map with χ(χ(r)s) = χ(rs) and χ(1 R) = 1 A. If R is a Frobenius A-ring, then we can define a trace map tr : A → A R. If there exists an element of trace 1 in A, then A is right FBN if and only if A R is right FBN and A is right noetherian. The result can be generalized to the case where R is an I-Frobenius A-ring. We recover resul...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Algebra

سال: 2023

ISSN: ['1090-266X', '0021-8693']

DOI: https://doi.org/10.1016/j.jalgebra.2023.05.022